Медицинская клиника собрала данные у 5 пациентов, чтобы изучить взаимосвязь между количеством часов бега трусцой в неделю (x) и их систолическим артериальным давлением (y).

Еженедельные часы	Систолическое артериальное
пробежек (х)	давление (у)
2	135
4	128
5	120
6	118
8	110

По данным выборки оценить модель

$$y = \beta x + \alpha + \varepsilon$$
.

- 1. Выписать оцененную модель.
- 2. Спрогнозировать Систолическое артериальное давление при Еженедельном часах пробежек 7.
- 3. Найти стандартную ошибку модели и стандартные ошибки коэффициентов регрессии.
- 4. Построить 95%-е доверительные интервалы для коэффициентов регрессии.
- 5. Найти коэффициент детерминации модели и сделать соответствующий вывод о качестве аппроксимации данных.

Ботаники хотят изучить, как азотные удобрения влияют на рост томатов. Они подготавливают 5 делянок и вносят удобрения в разной дозировке. После одного вегетационного периода они подсчитывают общий урожай с каждой делянки в килограммах.

Азотное удобрение	Урожайность томатов
$(x, \kappa \Gamma/\Gamma a)$	$(y, ext{тонн}/ ext{га})$
20	1.8
40	2.5
60	3.2
80	3.8
100	4.4

По данным выборки оценить модель

$$y = \beta x + \alpha + \varepsilon$$
.

- 1. Выписать оцененную модель.
- 2. Спрогнозировать Урожайность томатов при Азотном удобрение 70 кг/га.
- 3. Найти стандартную ошибку модели и стандартные ошибки коэффициентов регрессии.
- 4. Построить 95%-е доверительные интервалы для коэффициентов регрессии.
- 5. Найти коэффициент детерминации модели и сделать соответствующий вывод о качестве аппроксимации данных.

Владелец малого бизнеса хочет узнать, есть ли связь между еженедельными расходами на рекламу (x) в социальных сетях и продажами (y). Данные за последние пять недель:

Еженедельные расходы	Еженедельные
на рекламу (x)	продажи (у)
1	8
3	12
4	15
6	20
8	24

По данным выборки оценить модель

$$y = \beta x + \alpha + \varepsilon.$$

- 1. Выписать оцененную модель.
- 2. Спрогнозировать продажи при расходах 7.
- 3. Найти стандартную ошибку модели и стандартные ошибки коэффициентов регрессии.
- 4. Построить 95%-е доверительные интервалы для коэффициентов регрессии.
- 5. Найти коэффициент детерминации модели и сделать соответствующий вывод о качестве аппроксимации данных.

Меломан интересуется взаимосвязью между количеством виниловых пластинок (x) в его коллекции и общим количеством песен (y). Он собирает данные о 5 разных друзьях.

#Виниловые пластинки (х)	#Песен в коллекции (х)
5	55
10	110
15	160
20	200
25	260

По данным выборки оценить модель

$$y = \beta x + \alpha + \varepsilon.$$

- 1. Выписать оцененную модель.
- 2. Спрогнозировать количество песен при количестве виниловых пластинок 12.
- 3. Найти стандартную ошибку модели и стандартные ошибки коэффициентов регрессии.
- 4. Построить 95%-е доверительные интервалы для коэффициентов регрессии.
- 5. Найти коэффициент детерминации модели и сделать соответствующий вывод о качестве аппроксимации данных.

Химик готовит набор стандартных растворов меди для построения калибровочной кривой. С помощью спектрофотометра измеряется поглощение света каждым стандартом.

Концентрация меди (х, ррт)	Поглощение (у)
1.0	0.081
2.5	0.203
4.0	0.320
5.0	0.405
7.5	0.605

По данным выборки оценить модель

$$y = \beta x + \alpha + \varepsilon.$$

- 1. Выписать оцененную модель.
- 2. Спрогнозировать поглощение при концентрация меди 6.5.
- 3. Найти стандартную ошибку модели и стандартные ошибки коэффициентов регрессии.
- 4. Построить 95%-е доверительные интервалы для коэффициентов регрессии.
- 5. Найти коэффициент детерминации модели и сделать соответствующий вывод о качестве аппроксимации данных.

Производитель пластиковых плёнок исследует влияние температуры на толщину материала при сгибании. Они изменяют температуру фальцевальной машины и измеряют полученную толщину в миллиметрах. Данные 5 испытаний приведены ниже:

Температура $(x, ^{\circ}C)$	Толщина фальцовки (у, мм)
130	128
145	115
150	112
160	104
175	92

По данным выборки оценить модель

$$y = \beta x + \alpha + \varepsilon$$
.

- 1. Выписать оцененную модель.
- 2. Спрогнозировать Толщину фальцовки при Температуре 140 °C.
- 3. Найти стандартную ошибку модели и стандартные ошибки коэффициентов регрессии.
- 4. Построить 95%-е доверительные интервалы для коэффициентов регрессии.
- 5. Найти коэффициент детерминации модели и сделать соответствующий вывод о качестве аппроксимации данных.

Исследователь-агроном хочет смоделировать зависимость между годовым количеством осадков и урожайностью кукурузы. Данные собираются с шести сельскохозяйственных участков за несколько лет:

Количество осадков	Урожайность кукурузы
(x, дюймов $)$	(y, бушелей $/$ акр $)$
15	80
20	110
25	130
30	145
35	150

По данным выборки оценить модель

$$y = \beta x + \alpha + \varepsilon.$$

- 1. Выписать оцененную модель.
- 2. Спрогнозировать Урожайность при осадках 40.
- 3. Найти стандартную ошибку модели и стандартные ошибки коэффициентов регрессии.
- 4. Построить 95%-е доверительные интервалы для коэффициентов регрессии.
- 5. Найти коэффициент детерминации модели и сделать соответствующий вывод о качестве аппроксимации данных.

Преподаватель записывает среднее количество учебных часов (x) в неделю и результаты итоговых экзаменов (y) 5 учеников.

Часы обучения (х)	Результат теста (у)
5	70
10	85
12	88
15	92
8	80

По данным выборки оценить модель

$$y = \beta x + \alpha + \varepsilon$$
.

- 1. Выписать оцененную модель.
- 2. Спрогнозировать Результат теста при 7 Часах обучения.
- 3. Найти стандартную ошибку модели и стандартные ошибки коэффициентов регрессии.
- 4. Построить 95%-е доверительные интервалы для коэффициентов регрессии.
- 5. Найти коэффициент детерминации модели и сделать соответствующий вывод о качестве аппроксимации данных.

Респираторный терапевт записывает возраст (x) и ОФВ1 (объем форсированного выдоха за 1 секунду, в литрах) (y) у 5 здоровых некурящих взрослых.

Возраст (х)	ОФВ1 (y)
25	4.8
30	4.5
38	4.1
45	3.7
52	3.3

По данным выборки оценить модель

$$y = \beta x + \alpha + \varepsilon$$
.

- 1. Выписать оцененную модель.
- 2. Спрогнозировать ОФВ1 при Возрасте 33.
- 3. Найти стандартную ошибку модели и стандартные ошибки коэффициентов регрессии.
- 4. Построить 95%-е доверительные интервалы для коэффициентов регрессии.
- 5. Найти коэффициент детерминации модели и сделать соответствующий вывод о качестве аппроксимации данных.

Энергоаудитор регистрирует среднюю дневную температуру (x) и суточное потребление электроэнергии (y) зданием в теплое время года.

Средняя дневная	Ежедневное потребление
температура $(x, {}^{\circ}\mathbf{F})$	электроэнергии $(y, \mathbf{kBr} \cdot \mathbf{q})$
75	52
80	60
82	64
85	68
90	75

По данным выборки оценить модель

$$y = \beta x + \alpha + \varepsilon$$
.

- 1. Выписать оцененную модель.
- 2. Спрогнозировать потребление электроэнергии при температуре 77.
- 3. Найти стандартную ошибку модели и стандартные ошибки коэффициентов регрессии.
- 4. Построить 95%-е доверительные интервалы для коэффициентов регрессии.
- 5. Найти коэффициент детерминации модели и сделать соответствующий вывод о качестве аппроксимации данных.

Социолог исследует взаимосвязь между уровнем урбанизации страны (x) и уровнем имущественных преступлений (y). Они собирают данные из пяти разных стран.

Уровень урбанизации	Уровень имущественных
(x, %)	преступлений $(y,$ на $1000)$
60	35
75	45
80	48
85	52
90	58

По данным выборки оценить модель

$$y = \beta x + \alpha + \varepsilon$$
.

- 1. Выписать оцененную модель.
- 2. Спрогнозировать Уровень урбанизации при Уровене преступлений 70.
- 3. Найти стандартную ошибку модели и стандартные ошибки коэффициентов регрессии.
- 4. Построить 95%-е доверительные интервалы для коэффициентов регрессии.
- 5. Найти коэффициент детерминации модели и сделать соответствующий вывод о качестве аппроксимации данных.